
Practical Binary Analysis
Errata and Corrections

Updated 2022-01-06 07:56:17+01:00

If you find any errors not listed here, please report them to No Starch Press
or to the author at da.andriesse@gmail.com. Errors listed in blue are (currently
being) fixed in newer ebook releases and reprints. If you bought the book at No
Starch Press, you should be able to download the updated ebook version from
your account.

Page xiii (ToC) Some PDF viewers show the title “Binary Instruction” instead
of “Binary Instrumentation” for Ch9 in the table of contents.

Page xviii (Foreword) “programs programs” should read “programs.”

Page 2 (Introduction) “this books” should read “this book.”

Page 6 (Introduction) The ePub and Mobi versions of the book show the
assembly example in AT&T syntax. It should be in Intel syntax. The PDF
version does not have this error.

Page 55 (Ch2) In exercise 3, “Use readelf to disassemble two binaries” should
read “use objdump to disassemble two binaries.”

Page 110 (Ch5) In Listing 5-10, the command reads “objdump -d ctf.” This
should read “objdump -M intel -d ctf.” (Without the option -M intel

the command will output assembly in AT&T syntax instead of Intel syntax.)

Page 136 (Ch6) The URL mentioned in footnote 10 is no longer available. An
alternative URL is https://www.cs.vu.nl/~herbertb/papers/howard_
ndss11.pdf.

Page 144 (Ch6) “... make flow-sensitive analysis too computationally ex-
pensive” should read “... make context-sensitive analysis too computa-
tionally expensive.”

Page 153 (Ch6) “You’ll probably need to use some inline disassembly to
achieve this” should read “You’ll probably need to use some inline assem-
bly to achieve this.”

Page 168 (Ch7) The text states that “paths given in LD PRELOAD need to be
absolute.” While this is indeed a best practice to account for (sub)processes
that may change the working directory, it is not a strict requirement.
Relative paths will work in processes that leave the working directory
unchanged.

1

mailto:da.andriesse@gmail.com
https://www.cs.vu.nl/~herbertb/papers/howard_ndss11.pdf
https://www.cs.vu.nl/~herbertb/papers/howard_ndss11.pdf


Page 199 (Ch8) The ePub and Mobi versions of the book contain an error in
Listing 8-4, near marker Í. The comparison n >= 0 should read n <= 0.
The PDF version does not have this error.

Page 207 (Ch8) At the top of the page, the line

if(target && !seen[target] && text->contains(target))

causes the recursive disassembler to ignore branches to address zero. This
is fine on modern Linux distributions and most platforms, but could be an
issue on esoteric platforms that allow mapping code at address zero.

Page 217 (Ch8) The code near marker Í contains two integer underflows:

• The for loop’s initial value uint64 t a = root-1 will underflow if
root equals zero (this can only happen if the .text section is mapped
at VMA zero).

• If root contains a value less than root offset, the loop condition
a >= root-root offset will underflow. For example, if root equals
zero, root-root offset will wrap around and assume the value
UINT64 MAX - root offset + 1.

The underflows can be fixed by checking before the loop that root > 0

&& root >= root offset and changing the loop header to read:

for(uint64_t a = root-1;

text->contains(a) && a >= root-root_offset;

a--)

Page 386 (Appendix A) “After setting up a basic function frame, main decre-
ments rsp by 0x10 bytes to reserve room for two 8-byte local variables on
the stack” should read “After setting up a basic function frame, main decre-
ments rsp by 0x10 bytes to reserve room for local variables on the stack
(four bytes for argc and eight bytes for the argv pointer, the remaining
bytes being used for padding).”

Page 405 (Appendix B) “The write shdr function takes three parameters”
should read “The write shdr function takes four parameters.”

2


